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Abstract 

 

  The purpose of this research was to improve performance in speech recognition.  

Specifically, a new approach was investigating by applying an integral transform known 

as the Mellin transform (MT) on the output of an auditory model to improve the 

recognition rate of phonemes through the scale-invariance property of the Mellin 

transform.  Scale-invariance means that as a time-domain signal is subjected to dilations, 

the distribution of the signal in the MT domain remains unaffected.  An auditory model 

was used to transform speech waveforms into images representing how the brain “sees” a 

sound.  The MT was applied and features were extracted.  The features were used in a 

speech recognizer based on Hidden Markov Models.  The results from speech 

recognition experiments showed an increase in recognition rates for some phonemes 

compared to traditional methods. 
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Speech Recognition Using the 
 

Mellin Transform 

 
 

I. Introduction 

 Speech recognition has many military and commercial applications, for example: 

hands-free voice control of cockpit or automotive controls; voice-based data entry for 

applications that would normally require several mouse clicks or have several text entry 

fields; telephony applications such as telephone banking, catalogue centers, and call 

routing for customer service centers; and voice-based biometrics, etc.  Because of the 

wide applicability of speech recognition, it has received a great deal of research for a 

number of decades [1].  Despite this considerable attention, automatic speech recognizers 

still do not perform as well as human for most tasks. 

 One problem in speech recognition is achieving good speaker-independent 

performance.  A speech recognizer trained on many examples of speech for a given 

individual can often perform well.  However, a recognizer trained on the same amount of 

data but from a wide range of speakers, usually does not perform nearly as well.  There 

are a number of reasons why this is the case.  For example, women and children tend to 

have shorter vocal tracts than men, leading to shifts in the formants (vocal tract 

resonances).  Also, women and children tend to have higher average pitch than men.  

Another reason is the different accents and dialects among speakers.  These various 

differences among speakers cause considerable variability in the standard features used in 

speech recognition, which in turn reduces the phoneme discrimination of a recognizer, 

where phonemes are basic elements of speech.  This research attempts to partially address 



 2

this speaker-independent speech recognition problem through the use of a feature set 

based on an auditory model and the Mellin transform. 

 The Mellin transform (MT) [2] is the integral transform 

 ( ) ( ) ( )1

0

,s
f tM s = t f t dt s

∞
− ∈∫ .     (1) 

 The usefulness of the MT lies in its scaling property.  Research has shown that the 

MT normalizes vowel feature sets from speakers with different voice pitches [3].  The 

benefits of the MT with an auditory model are that it helps to separate pitch information 

from the vocal tract configuration and that it generates a representation that separates the 

vocal tract size information from the general shape information.  The research conducted 

here uses an entirely new approach in the field of speech recognition by performing the 

MT on all speech data, not just vowels, to determine if features from the MT lead to 

improved phoneme discrimination across speakers. 

 For this research several Matlab scripts were written to run experiments and to 

supplement previously written code.  Altering part of the code that executes the MT 

resulted in a reduction in computation time by a factor of four.  Hidden Markov models 

(HMMs) were used to perform recognition experiments.   The results were compared to 

results from traditional automatic speech recognition (ASR) using the standard features, 

which are mel frequency cepstral coefficients (MFCCs).  The results obtained from the 

speech recognition experiments show a recognition rate improvement for some phonemes 

over conventional methods used in ASR. 

 Chapter 2 discusses the terms and the basic tools used in this research and 

provides a background for understanding the methodology.  Chapter 3 discusses the 

experimental methodology, including steps for obtaining results and why each step was 
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taken.  Chapter 4 analyzes the results, and Chapter 5 provides a discussion and 

recommendations for future research.  
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II. Background 

This chapter discusses the basics of speech recognition and also defines the terms 

and tools used to accomplish the results of this research.  Once a background 

understanding of the methods for speech recognition is reached, the experimental 

methodology discussed in Chapter 3 will be understood more completely. 

2.1 Speech Recognition Basics 

 As mentioned in the previous chapter, speech recognition is highly challenging in 

that it requires developing statistical models to understand and recognize human speech.  

The basic model for a speech recognition system is shown in Figure 1.  The first step is to 

extract features from the speech that will be used in the pattern recognition analysis to 

recognize the speech.  Successful speech recognition requires prior knowledge in the 

form of an acoustic model, a pronunciation dictionary, and a language model.  The 

recognizer uses the prior knowledge sources and the feature vectors to determine a set of 

words according to the fundamental speech recognition equation [4] given as: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  A block diagram of the basic model for speech recognition. 
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( )' arg max
w

w P w X= .       (2) 

This equation states that the hypothesized words, w’, equal the argument that maximizes 

the probability of the words, w, given the acoustical features matrix X.  Using Bayes’ 

rule, this equation becomes 

( ) ( )
( )

' arg max
w

P X w P w
w

P X
= .      (3) 

The probability P(X) of the feature matrix is simply a scalar constant for all word 

sequences, so it can be ignored.  This leaves the following equation to describe the 

speech recognition process: 

( ) ( )' arg max
w

w P X w P w=        (4) 

The P(w) term is the prior probability of a sequence of words, w, which is described by 

the language model.  Language models are one component that a speech recognizer uses 

and are discussed in further detail below in Section 2.2.  The P(X|w) factor is the 

probability of a feature matrix given the word sequence, w.  This term is taken into 

account through the acoustic models. 

 The final component for a speech recognizer is a pronunciation dictionary.  An 

example of part of a pronunciation dictionary is shown in Table 1.  The pronunciation 

dictionary tells the recognizer how words are broken up into smaller units called 

phonemes, which are the smallest basic units of speech.  There are about 39 different 

phonemes in the English language.  Speech recognition is often performed using 

phoneme-level acoustic models rather than word-level models.  This is due to a lack of 

data necessary for training individual word models.  This research uses phoneme-level 

acoustic models. 
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ABBREVIATE [ABBREVIATE] AH  B  R  IY  V  IY  EY  T  SP 
ABBREVIATE [ABBREVIATE] AX  B  R  IY  V  IY  EY  T  SP 
ABDOMEN [ABDOMEN] AE  B  D  OW  M  AH  N  SP 
ABDOMEN [ABDOMEN] AE  B  D  AX  M  AX  N  SP 
ABIDES [ABIDES] AH  B  AY  D  Z  SP 
ABIDES [ABIDES] AX  B  AY  D  Z  SP 
ABILITY [ABILITY] AH  B  IH  L  AH  T  IY  SP 
ABILITY [ABILITY] AX  B  IH  L  IX  T  IY  SP 
ABLE [ABLE]  EY  B  AH  L  SP 
ABLE [ABLE]  EY  B  EL  SP 

 

Table 1.  Part of a typical pronunciation dictionary used for speech recognition.  The first 
column is the word to be recognized, the second column is the output when that word is 
recognized, and the third column shows a breakdown of all the phonemes that make up 
each word, where “SP” denotes a short pause. 
 

2.2 Language Models 

Language models estimate the probability of sequences of words [4].  A speech 

recognizer uses a language model to estimate the probability a given word will follow 

another word in a spoken sequence.  Common language models are bigram and trigram 

models.  These models contain computed probabilities of groupings of two or three 

particular words in a sequence, respectively.  This project uses a phoneme-level language 

model for phoneme recognition experiments.  The phoneme-level language model used in 

this research, allows any phoneme to follow any other phoneme with equal probability.  

Language models are not the focus of this research and therefore are not discussed 

further. 

2.3 Hidden Markov Models 

HMMs are the acoustic models that produce the best results in speech recognition 

[5].  They estimate probabilities of sequences of events, and are comprised of states, 

where each state determines a set of probabilities.  In general, HMMs are described by a 

state transition matrix, where each state has a transition probability of moving from the 

current state to the next state and also has probability densities of emitting continuous 
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features from each state.  An example of a three state HMM transition matrix is shown in 

Figure 2, where each number is a probability of going from the current state, represented 

by the rows, to the next state in the sequence, represented by the columns.  For example, 

the value in row 2, column 3 represents the probability of moving from state 1 to state 2.  

The first row represents the initial or starting state, and the last row represents the final or 

exit state, which do not emit anything.  The initial state is just a starting point, so the 

HMM cannot remain in the initial state and cannot return to the initial state once it is left, 

so the probabilities are zero for all of column 1.  Similarly, once the exit state is reached, 

the HMM cannot transition to any other state, so the probabilities in row 5 are all zero. 

In Figure 3 the arrows represent the probabilities governed by the state transition 

matrix.  The i and e states are the initial and exit non-emitting states, and states 1, 2, and 

3 are the emitting states.  HMMs may use as many states as desired, although one to five 

is the norm for speech recognition.  The more states that are used, the more complex an 

HMM model becomes, due to the fact that more parameters must be calculated to 

describe it.  The parameters in the state transition matrix and the state emission 

probability densities begin with initial guesses, and training provides more accurate 

estimates of these parameters.  The algorithm that accomplishes training by iteratively 

 
 

                next state 

 

current state 

 

 

Figure 2.  An example of a state transition matrix of an HMM. 
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Figure 3.  Diagram of a 3 state HMM with initial state and end state.  The a variables 
represent state transition probabilities. 
 

estimating and re-estimating these parameters is known as the Baum-Welch algorithm 

[4].  The Baum-Welch algorithm, also known as the Forward-Backward algorithm [5], is 

an expectation maximization algorithm that works iteratively to update the parameters of 

the HMMs to match the observed sequence of training data. 

This research uses continuous density HMMs, which use a Gaussian probability 

density for each state to model the probability distribution of emitting continuous 

observation vectors from the HMM.  The means and variances of these Gaussian mixture 

densities are estimated by the Baum-Welch algorithm for continuous HMMs using 

Equations 5-11.  The probability of generating observation vt in state j [4] is computed 

using Equation 5. 

 ( ) ( )
1

; ,
jM

j t jm t jm jm
m

b c N μ
=

= ∑∑v v ,      (5) 

where Mj is the number of mixture components in state j, cjm is the weight of the m’th 

component and N(vt; μ,Σ) is a multivariate Gaussian density with mean vector μ and 

covariance matrix Σ, i.e., 
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 ( )
( )

( ) ( )11
21; ,

2 n
N e

μ μ
μ

π

−′− − ∑ −
∑ =

∑

v v
v ,    (6) 

where n is the dimensionality of v [4] and |Σ| denotes the determinant of the matrix Σ. 

Next, the forward probability of observing the speech vectors while in state j at 

time t is estimated using Equation 7 

( ) ( ) ( )
1

2
1

N

j i ij j t
i

t t a bα α
−

=

⎡ ⎤
= −⎢ ⎥
⎣ ⎦
∑ v ,     (7) 

where the state transition probability is aij [4].  The first and last states are the initial and 

exit states which do not emit; hence the limits of the summation do not include those 

states.  Next, the backward probability [4] is estimated using Equation 8. 

 ( ) ( ) ( )
1

1
2

1
N

i ij j t j
j

t a b tβ β
−

+
=

= +∑ v ,      (8) 

where βi(t) is the probability that the model is in any state and will generate the remainder 

of the target sequence from time = t + 1 to time = T [5].  The transition probabilities [4] 

are then able to be estimated using Equation 9. 

 
( ) ( ) ( )

( ) ( )
11

1

1T
i ij j t jt

ij T
i it

t a b t
a

t t

α β

α β
+=

=

+
′ = ∑

∑
v

     (9) 

Equations 10-11 describe the calculations for estimating the means and variances of the 

Gaussian mixtures.  Each observation is weighted by Lj(t), which is the probability of 

being in state j at time t, and normalized by dividing by the sum of all the Lj probabilities 

[4]. 

 
( )
( )

1

1

T
j tt

j T
jt

L t

L t
μ =

=

′ = ∑
∑

v
         (10) 
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( )( )( )
( )

1

1

T
j t j t jt

j T

t

L t

Lj t

μ μ
=

=

′− −
=Σ′ ∑

∑
v v

      (11) 

The set of equations described above can be used iteratively as many times as needed to 

get better estimates of the HMM parameters.  In general, there is an equation for 

estimating the cjm terms; however, this research used only single-mixture models for each 

state so the cjm terms were all unity.  For the speech recognition experiments performed 

here, the HMMs are trained with features extracted from the speech phonemes.  

Thousands of feature vectors are used as training data, and the result is one HMM that 

represents each individual phoneme. 

Once the HMMs are trained, testing may begin.  Testing classifies unknown 

phonemes by finding which HMM phoneme model is most likely to have produced the 

observed features.  The test speech data are decoded using the HMMs along with a 

language model and a dictionary.  Various algorithms exist for decoding the test speech 

data.  The one employed in this project is known as the Viterbi algorithm [4].  The 

Viterbi algorithm is a dynamic programming algorithm that calculates the most likely set 

of HMM states that produced the observed set of sequences, which in this case is the test 

data, taking into account a language model and dictionary for computing results.  For 

example, the algorithm takes a test speech input and computes the sequence of HMM 

phoneme models most likely to have produced it [5]. 

2.4 Mel Frequency Cepstral Coefficients as Features 

 Features often used for training HMMs are MFCCs [1] [4].  These are coefficients 

based on the Mel scale that represent sound.  The word cepstral comes from the word 

cepstrum which is a logarithmic scale of the spectrum (and reverses the first four letters 

in the word spectrum).  Figure 4 illustrates how MFCCs are calculated.  First, the speech  
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Window
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Figure 4.  Block diagram of the calculations for MFCCs. 
 

data are divided into 25 ms windows (frames).  A new frame is started every 10 ms 

making this the sampling period and causing the windows to overlap each other.  Next, 

the fast Fourier transform is performed on each frame of speech data and the magnitude 

is found.  The next step involves filtering the signal with a frequency warped set of log 

filter banks called Mel-scale filter banks.  These log filter banks collect the signal 

information into the coefficients mi, which are the log filter bank amplitudes.  The log 

filter banks are arranged along the frequency axis according to the Mel scale, a 

logarithmic scale that is a measure of perceived pitch or frequency of a tone [6], thus 

simulating the human hearing scale.  The Mel scale is defined in Equation 12. 

 ( ) ⎟
⎠
⎞⎜

⎝
⎛ += 7001log2595 10

ffMel       (12) 

The Mel scale yields a compression of the upper frequencies where the human ear is less 

sensitive.  The filtering process is illustrated in Figure 5.  Next, the logarithm is taken of 

the log filter bank amplitudes.  Finally, the MFCCs are calculated using the discrete 

cosine transform (DCT) in Equation 13. 

 

 



 12

1

frequency
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Figure 5.  An example of a Mel-scale filter bank. 
 

( )
1

2 cos 0.5
N

i j
j

ic m j
N N

π
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ,      (13) 

where N is the number of filter banks and the ci terms are the resulting MFCCs. 

To further enhance speech recognition performance, an extra set of delta and acceleration 

coefficient features are sometimes calculated with MFCCs.  These features are the first 

and second time derivatives of the original coefficients, respectively. 

 The results obtained in this project are compared to speech recognition 

performance on regular MFCCs as well as on MFCCs with delta and acceleration 

coefficients.  Generally, the MFCC method for ASR yields the most successful results. 

2.5 Auditory Image Model 

 An alternative method of feature extraction that is a more recent development 

than MFCCs is something called the Auditory Image Model (AIM).  The AIM model is 

software that models how the human ear processes speech [7].  It models the human 

hearing mechanism by simulating the processes the ear performs on a sound, resulting in 

an auditory image that represents the sound.  AIM includes tools to simulate the spectral 

analysis, neural encoding, and temporal integration performed by the auditory system [7].   
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 Figure 6 shows a block diagram that represents the process that AIM uses to 

process a sound. The PCP (pre-cochlear processing) block performs filtering of the signal 

to represent the response up to the oval window of the inner ear.  The BMM (basilar 

membrane motion) block represents the basilar membrane motion response to the signal.  

It is simulated by a gamma-tone filter bank of bandpass filters with evenly distributed 

center frequencies along a quasi-logarithmic scale known as an equivalent rectangular 

bandwidth (ERB) scale [8].  This process transforms the signal (in effect) to a moving 

surface that represents the basilar membrane as a function of time [9].  The NAP (neural 

activity pattern) block simulates the neural activity pattern produced by basilar membrane 

energy transduction to the auditory nerve which generates its firing activity pattern [7].   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.  A block diagram of AIM and each of its modules.  
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Figure 7 shows one frame of the NAP of a speech signal.  The pulses have a rightward 

skew from high to low frequency (as shown by the dotted lines) because of the phase lag 

in the output of the cochlea in the BMM [7]. 

The Strobes/SAI (stabilized auditory image) block calculates the stabilized 

auditory image using strobed temporal integration (STI) and represents the temporal 

integration performed on the NAP.  This process simulates the perception of the human 

ear by stabilizing oscillating sounds into static patterns [7].  STI works by strobing the  

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.  A frame of the NAP of a vowel sound generated by the NAP block of Figure 6 
and presented as a waterfall plot.  The NAP module of AIM converts basilar membrane 
motion into a representation that is expected to be similar to the pattern of neural activity 
found in the auditory nerve or cochlea nucleus.  The abscissa of the plot is time, and on 
the ordinate each horizontal line represents one of 35 channels with center frequencies 
from 100 Hz to 6 kHz on a log scale.  The height of each pulse represents the “firing rate” 
of the NAP. 
 



 15

signal to the levels of high activity in the NAP by locating the points in each channel that 

are local maxima.  This information then defines the limits of integration when 

performing temporal integration for calculating the SAI [8].  Figure 8 shows one frame of 

the SAI of the speech signal from Figure 7.  The SAI representation is based on the 

assumption that as the NAP flows from the cochlea, the human hearing mechanism acts 

as a bank of delay line filters [10] that capture information into a buffer store.  This 

process stabilizes the repeating patterns of the NAP into the SAI, which is an image 

representing the sound.  The phase lag from the NAP plot is removed, causing the phase 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 8.  A frame of the stabilized auditory image (SAI) of a vowel sound generated by 
the AIM.  The SAI module of AIM uses STI to convert the NAP into the SAI.  The 
abscissa of the plot is time, the ordinate is frequency on a log scale, and vertical height 
represents the “firing rate” of the SAI. 
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to be aligned in the SAI plot as shown by the dotted lines.  The SAI is described by 

Equation 14 as 

( ) ( )0 0
0

, , pkt
I w p

k

A f S f kt e e ηξτα τ α τ
∞

−−

=

= +∑ ,    (14) 

where Sw is the output of the NAP, αf0 is the peak frequency of each auditory filter in the 

filter bank, τ is the time axis for the SAI, tp is the period of the signal, and η and ξ are 

factors that affect the time interval of each SAI frame and the decay rate of the 

waveforms in each frame [11].  The pattern of the pulse peaks or ridges in the SAI follow 

a time-interval-peak frequency product path, denoted by h, which is constant along the 

ridges of the SAI.  This time interval-peak frequency product path is used later in the 

calculation of the MT.  The SAI synchronization block and its justification are discussed 

in Section 3.2.2. 

2.6 The Mellin Transform and its Applications 

 The MT is the integral transform defined in Equation 1.  Similar to the Fourier 

transform (FT), the MT possesses certain properties [12], some of which are displayed in 

Table 2.  As mentioned previously, the scaling property of the MT is exploited in this  

 

Property  Function Mellin Transform 
Standard  f(t)  M(s) 
Scaling  f(at)  a-sM(s) 
Linear  af(t)  a M(s) 
Translation  xaf(t)  M(a+s) 
Exponentiation  f(ta)  a-1 M(s/a) 

 
Table 2.  Key properties of the MT.  The property of interest here is the scaling property, 
which states that dilation of the abscissa in the time-domain by the factor a has no effect 
on the shape of M(s) in the Mellin-domain.  The time dilation by a is encoded in the a-s 
factor and does not dilate M(s). 
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project.  The FT is translation-invariant in that it does not matter if the signal is shifted in 

time by some Δt; the magnitude of the FT of the signal remains the same (although the 

phase changes).  This translation invariance does not hold for the MT, however, so the 

limits of integration must be defined when it is calculated.  The limits of integration are 

defined by the STI, as discussed in the previous section.  The MT is not translation 

invariant, but it has a scaling property, and when evaluated under certain conditions it is 

scale invariant within a phase factor [11] [3].  This scale invariance comes from the 

scaling property of the MT and means that as the time-domain distribution of the signal is 

subjected to dilation, the magnitude distribution of the MT does not dilate.  Contrast this 

to the FT, where if the time axis of a signal is compressed or expanded, the magnitude of 

the Fourier spectrum is expanded or compressed, respectively.  However, for the MT, 

dilation of the time-axis does not compress or expand the distribution in the Mellin 

domain.  Equations 15-17 show how the scaling property of the MT, affects time axis 

dilation of a signal.  In particular, let 

( ) ( )1

0
( ) s

f tM s t f t dt
∞ −= ∫ .       (15) 

If the time axis is dilated by a factor of a, the result is 

( ) ( )1

0
( ) s

f atM s t f at dt
∞ −= ∫ .       (16) 

With τ = at, or t = τ/a, the integral is: 

 ( ) ( ) ( ) ( )
1 1

1

0 0

1 1s s
s s

f t
df f d a M s

a a a a
τ ττ τ τ τ

− −
∞ ∞ − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫ .  (17) 

Thus, if M(s) is the MT of some function f(t), the introduction of a dilation factor a either 

expands or compresses the time axis, but in the Mellin domain the net result of the MT is 

a segregation of the size and shape information from the signal [11].  This normalizing 

effect of the MT may be useful for achieving improved speaker independent speech 
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recognition.  Figure 9 shows the MT of the SAI from Figure 8.  Chapter 3 gives an in-

depth description of how the MT is calculated in Matlab, which indicated that the MT is 

evaluated using an FT such that s = -jc + ½. 

 The MT has many uses, including digital image registration and digital 

watermarking [13], digital audio effects processing [14], and vowel normalization [11].  

Experiments in vowel normalization have shown positive results [3].  Thus, this research 

attempts to use the normalizing effect of the MT on all speech to determine if results 

improve over conventional ASR methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.  A section of the MT of the SAI from Figure 8 generated by the MT block of 
the AIM.  The abscissa of the plot is called the time-interval-peak frequency product 
because the ridges in the SAI plot follow a path where the time-interval and the peak 
frequency in the SAI equal a constant, h.  The MT is computed along these vertical paths, 
which results in a two-dimensional MT plot.  The ordinate shows the Mellin variable, 
which is the argument of the MT, much like jω in the FT.  Darker color in a region 
indicates greater Mellin coefficient magnitude. 
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III. Experimental Design 

This section presents the steps taken for phoneme recognition experiments with MFCCs 

and the MT features using HMMs trained with the Hidden Markov Model toolkit (HTK) 

[15].  The experiments were run using the TIMIT database. 

3.1 TIMIT Database 

The TIMIT database is a collection of 6300 sentences, 10 sentences each spoken 

by 630 persons from eight different dialect regions in the United States.  The speech was 

recorded at Texas Instruments (TI) and transcribed at the Massachusetts Institute of 

Technology (MIT), which is how the database derives its name.  It was created for the 

purpose of “providing speech data for the acquisition of acoustic-phonetic knowledge and 

for the development and evaluation of automatic speech recognition systems” [16].  The 

database is divided into training data, which consists of approximately 73% of the 

database, and testing data, which consists of approximately 27% of the database.  The 

transcription files containing the words and phonemes of each spoken sentence are also 

contained in the database.   

For some experiments, a subset of the database is used instead of the entire 

database.  This subset consists of 100 sentences, 10 spoken utterances each from 10 

speakers.  For the subset, training is performed by the leave one out method which trains 

on 9 speakers and tests on the 10th speaker, then leaves a different speaker out for testing, 

etc.  The results of leaving each speaker out once is averaged and shown as the result.  

The reason for using this subset was to obtain some results quickly from each of the 

experiments before performing them on the entire database, which requires much more 

time. 
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TIMIT is a small sized database by current standards, but it is a good choice for 

this research because it is a diverse collection of data that possesses a good balance 

between having enough data for training and testing and being small enough to avoid an 

exorbitant amount of time in running experiments.  It also is useful for speech recognition 

research because it has been in existence for over two decades, has been used in 

numerous experiments, and can be used for comparison with results obtained here. 

3.2 Mellin Transform Processing 

 Several versions of the AIM exist.  For this research, the Auditory Image Model 

in Matlab (aim-mat) [7] is used to implement the AIM, because it is the only version that 

includes code for performing the MT.  Aim-mat has a graphical user interface (GUI) 

which allows a user to load a sound file and perform AIM calculations on it with ease; 

however, this research employs the command line version of aim-mat instead of the GUI 

to receive input and produce results so that batch processing can be implemented without 

user interaction.  A parameter structure file called “all_parameters.m” (listed in Appendix 

A) includes all necessary parameters for the AIM calculations.  When run in Matlab, this 

structure file creates a variable called “all_options”, which specifies various parameters 

and options necessary for each block of AIM. 

3.2.1 Processing up to the SAI Stage 

Figure 10 shows the overall process.  The first step is to convert the speech files 

in the TIMIT database, which are NIST sphere files, to wave file format so that Matlab 

can use them.  This conversion is accomplished using the Perl script 

“convert_timit_wav.pl” (listed in Appendix B).  The Matlab script “main_program.m” 

(listed in Appendix C) was developed to use the aim-mat code by calling the appropriate 

functions, processing the resulting data from these functions, and writing results to the  
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Figure 10.  Block diagram of the overall procedure.  Data from the TIMIT database is 
first preprocessed so that it is useable in Matlab.  The aim-mat code uses the resulting 
input wave files to construct the SAI and the MT of the SAI.  A modification made to the 
code written specifically for this research is represented by the SAI synchronization 
block.  This module converts the SAI, which is asynchronous, into a synchronous data 
stream before the MT is computed and the MT images are sent to HTK for recognition 
tests.  The HMMs require synchronous data for training. 
  

correct location.  Thus, the “main_program.m” script runs the entire process of the 

conversion from wave files to Mellin transform data files, including loading the 

parameter file, calling the aim-mat subroutines, loading SAI and MT image data, saving 

SAI and MT image data, plotting, and converting MT image data to HTK format.  The 

paths in the “main_program.m” script must be set correctly to read from the directory 

where the wave files are stored and to write the SAI and MT results in the desired 

directory.  The options in the “main_program.m” script can be set so that only the SAI is 



 22

calculated, only the MT is calculated (on previously calculated SAI), both SAI and MT 

are calculated on the fly, or the HTK conversion of the previously calculated MT files is 

calculated.  The parameters for each of the six AIM modules are specified in the 

“all_parameters.m” script.  Some of the parameters include specifying the algorithms 

used in the AIM modules.  Each module can use different algorithms to accomplish the 

calculation.  The built-in algorithms used here are: 

• PCP: none 

• BMM: gamma-tone filter bank 

• NAP: irinonap 

• Strobes: irinostrobes 

• SAI: irinosai 

• User-Module: mellin 

These algorithms perform the steps in the AIM (as discussed in Section 2.5), as well as 

the MT.  They were chosen because they are less computationally intensive than 

alternative algorithms.  Future research could investigate the effects of different choices 

for the various components. 

 Once all the parameters and options are set, the “main_program.m” script uses the 

aim-mat code to generate the AIM of the speech signals, which includes its SAI and the 

MT of the SAI.    The SAI is a representation of the speech signal that is divided into 

frames, where each frame represents 35 ms of the speech signal. 

3.2.2 SAI Synchronization 

The SAI representation is asynchronous, meaning that the time intervals between 

the start-times of each frame are not the same.  Later, HMMs are used to perform the 

speech recognition experiments, and they require synchronous input data.  Therefore, the 
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SAI must be synchronized prior to the experiments.  The SAI synchronization block from 

Figure 6 represents this step, which is performed before the MT calculation.  The script 

called “synch_sai.m” (listed in Appendix D) is additional code, written specifically for 

this research, to execute the SAI synchronization process.  It works by sampling the SAI 

every 10ms and taking the frame that starts the closest to each 10 ms sampling period.  

The sampling rate of 10 ms was chosen because it equals the sampling rate used for 

calculating MFCCs.  By using the same sampling rate for both MFCC calculation and 

SAI synchronization calculation, results can be more accurately compared between both 

methods.  This SAI synchronization process discards some of the original frames, which 

is acceptable because portions of each of the frames representing the speech signal 

overlap.  Each frame contains an image with six to eight vertical pulse patterns called 

strobes, where each strobe contains a decayed version of the previous strobe.  The 

synchronization processes each frame by taking only the first 10 ms, which is 

approximately the first two strobes of each SAI frame, because each frame contains a 

decayed part of the frame previous to it.  By removing the decayed portions from each 

frame, the synchronized SAI contains less redundant information than the original SAI.  

This action also has the benefit of a reduction in computation time for the MT 

calculation.  Figure 11 shows a synchronized version of the SAI. 

3.2.3 Mellin Transform Calculation 

 After the necessary synchronization process is complete, the final step in the aim-

mat code performs the calculations for the MT, and the results are saved to the previously 

specified path in the “main_program.m” script. 

Aim-mat uses the MT to map auditory speech images from vocal tracts of 

different sizes into an invariant MT image [17] by performing a one dimensional MT  
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Figure 11.  The sampled version of the SAI generated by the “SAI synchronization” code.  
Each strobe begins at each multiple of 10 ms, which is due to the 10 ms sampling rate of 
the synchronization process.  The process also takes the first two strobes from each frame 
and removes the rest, which is a decayed version of the first 2 strobes.  The abscissa of 
the plot is time, the ordinate is frequency on a log scale, and vertical height represents the 
“firing rate” of the SAI. 
 

along each time interval-peak frequency product column of the SAI, resulting in a 

collection of MTs which form a two-dimensional image.  The MT of the SAI [11] from 

Equation 14 is 

 ( ) ( )1 ln

0
, ,

T s
I

hM s h A e dττ τ
τ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ,     (18) 

where AI is the SAI representation and h is the parameter representing the time interval-

peak frequency product constant. 
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Calculation of the MT image from the SAI is accomplished by a two stage 

process. First, a time dilation of each of the SAI channels by a factor proportional to the 

center frequency of the channel filter is performed.  This intermediate representation is 

called the size-shape image (SSI) [17] and implements the ln τ term in Equation 18 by 

creating a log-time axis [11].  The logarithmic time scale is achieved if we let 

, , 0 ,x xt e dt e dx= = → −∞ ∞→∞ . 

This causes the form of the MT when evaluated at s = -jc + ½ to be 

 

( ) ( ) ( )
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1 2
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1 2
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1 2 0
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∞ − − −
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∞ −

⎫− + = ⎪
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⎪
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∫

∫

∫

 ,   (19) 

which is the FT on a logarithmic time scale.  This is used in the second state where the 

SSI is used to compute the MT.  The center frequencies of the AIM filters are now on a 

logarithmic scale along the abscissa.  This coordinate system makes the MT equivalent to 

a FT on spatial frequency [11], where each column of the final MT image is computed by 

performing the FT on the columns of the SSI [17] and taking the magnitude. 

3.3 Illustration of the Effect of Pitch Scaling 

Generally women and children have higher pitched voices than men.  Figures 12 

and 13 use this fact to illustrate the effects of pitch scaling on the MT by showing a 

simulated vowel sound at pitches of 100 Hz and 200 Hz, respectively.  This pitch 

difference simulates how typical male and female voices produce the same vowel sound 

with different pitches.  The first, second, and third formants, indicated by the horizontal 

arrows in both figures, are at a frequency of 450 Hz, 1450 Hz, and 2450 Hz, respectively, 
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simulating the formants of the phoneme /uh/.  It can be seen that the pitch periods for the 

male spoken vowel of Figure 12 last approximately twice the amount of time as those for 

the female spoken vowel of Figure 13, as indicated by the vertical arrows in each figure. 

Figures 14 and 15 show the MT of Figures 12 and 13, respectively.  It can be seen 

that the high amplitude regions for Figure 14 lie in the same regions as those of Figure 

15.  The differences in the amplitudes are due to the fact that the two vowels are not fully 

scaled versions of each other.  Only the pitch is scaled; the formants are the same for the 

two signals. 
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Figure 12.  The SAI of the vowel sound /uh/ at a pitch of 100 Hz, typical of a male 
speaker.  Notice that the pitch period is 10 ms as indicated by the vertical arrows.  The 
vowel formants are 450 Hz, 1450 Hz, and 2450 Hz as shown by the horizontal arrows.  
Compare this figure to Figure 13, which shows the same vowel spoken with a pitch of 
200 Hz, typical of a female speaker. 
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Figure 13.  The SAI of the vowel sound /uh/ at a pitch of 200 Hz, typical of a female 
speaker.  Notice the pitch period is 5 ms as indicated by the vertical arrows. 
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Figure 14.  The MT of the SAI from Figure 12.  Compare this plot to Figure 15, which is 
the MT of the SAI from Figure 13. 
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Figure 15.  The MT of the SAI from Figure 13.  Figures 12 and 13 show considerable 
changes between male and female vowels, whereas Figures 14 and 15 show similar 
regions of high amplitude. 
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3.4 HMMs with HTK 

This research uses a set of programs called HTK to train HMMs and conduct 

phoneme recognition experiments.  HTK is open source software designed by the 

Cambridge University Engineering Department along with Entropic Research 

Laboratories [15].  HTK also provides utilities for extracting features from speech data 

and custom user defined features can be imported into HTK, as was the case for this 

project. 

 Before the MT data can be used in HTK to perform speech recognition 

experiments, it must be converted to a format that HTK can use.  The Matlab script 

“writehtk.m”, obtained from the Imperial College department of electrical and electronic 

engineering at the University of London website [18], is used to perform the conversion 

of MT data to HTK format.  This conversion is accomplished by reshaping the matrices 

of each MT frame into a row vector so that each frame is one row.  The data is written as 

a floating point binary file.  The frame period, which is 10 ms, is also encoded into the 

file along with a flag identifying the data as user defined features.  After this process, the 

data can be imported into HTK. 

Figure 16 illustrates the processes and commands used to perform phoneme 

recognition.  The HCopy command is part of the data preparation phase and calculates 

MFCC features of the input speech data.  Because data preparation for the MT is 

accomplished prior to importing into HTK, the HCopy command is not needed for the 

MT features and is omitted.  The next command in HTK is HCompV, which works by 

computing the global mean and covariance of the training data and assigning these values 

as the starting points in the Gaussians in each phoneme HMM model.   This assignment 

is known as the initialization stage for “flat-start” training, because each phoneme model  
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 Figure 16.  A block diagram for steps HTK uses in taking an input and computing 
percent correct recognition results.  Results can be shown in percent correct recognition 
per sentence, per speaker, or over the entire test data set. 
 

starts identically [4].  Once initial estimates for the HMM models are calculated, the 

models can be re-estimated by training with the HERest command.  This command uses 

the Baum-Welch algorithm to perform re-estimation of the mean, variance and state 

transition parameters of the HMMs [4] and may be used iteratively to re-estimate the 

parameters of the HMM models.  For this research, the re-estimation is performed for a 

total of three iterations.  In iteratively estimating the HMM parameters, there is the option 

of updating the weights, means, and variances of the mixtures.  For some of the 

experiments, a global variance was used and not further updated. 
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 When training is complete, the HVite command is used for testing.  HVite is a 

Viterbi word recognizer that computes the likelihood of the phonemes that produced the 

given speech data using the HMM models, a language model, and a dictionary, and it 

outputs a transcription of the speech file.  When testing is complete, the HResults 

command outputs the results, including the percent correct recognition rates as well as 

other statistics determined by options in the command.  Some of these statistics include: 

the number of correctly recognized phonemes, words, and sentences as well as the 

number of errors from deletions, insertions, and substitutions.  Also, HResults can 

compute a confusion matrix, which is a matrix that displays all phonemes in rows that 

show which phoneme is recognized and the number of times it occurs. 

Several variations of test data are used for the training and test process in this project.  By 

default the MT produced by the AIM has too many features to estimate with HTK (about 

192,000); however the options in the “main_program.m” file can be set to control the MT 

image data resolution.  The number of features and the size of the MT image file are 

equivalent to image resolution, where a larger resolution means that more pixels are 

required to describe the image, resulting in a larger memory requirement.  Smaller 

images reduce the memory size of the image but also reduce the information contained in 

the image, as illustrated in Figure 17, which show the two Mellin image resolutions used 

here compared to the default resolution that aim-mat produces.  HTK was recompiled to 

accept a maximum number of features of 8192.  Due to this limitation, the original 

number of features set in the options file for the MT data was 8100.  The use of 500 

features from the MT was also investigated, to make the process of training and testing 

faster and to observe the impact of the reduced resolution on the recognition results.  The  
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Figure 17.  A comparison of the two Mellin image resolutions used in this research 
compared to the default resolution that aim-mat produces.  The top plot is the default 
aim-mat resolution which has about 192,000 features, the middle plot is the one 
containing 8100 features, and the bottom plot is the one containing 500 features. 
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SAI data was also used to train and test HMM models with HTK; the SAI data used 5600 

features.   
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IV. Results 

 Results from each experiment in HTK were output to a master label file (MLF) 

for analysis by different methods.  One method outputs the percent correct recognition of 

phonemes over the entire test set.  Percent correct recognition is defined as H/N x 100%, 

where H is the number of correctly identified phonemes and N is the total number of 

phonemes.  The number of correctly identified phonemes is given by: H = N – S – D, 

where D is the number of deletions and S is the number of substitutions.  A deletion 

occurs when a phoneme should have been recognized but was omitted.  A substitution 

occurs when a phoneme is mistaken for a different phoneme.  Another output statistic is 

the percent accuracy defined as (H - I)/N x 100%, where I is the number of insertions in 

the output.  An insertion occurs when a phoneme is mistakenly inserted into a place 

where no phoneme should be recognized.  Note that the percent accuracy can be negative 

if enough insertions occur.  Most of the results emphasized below are percent correct 

recognition of phonemes. 

4.1 Overall Results 

Table 3 shows overall percent correct recognition results from the experiments 

described in Chapter 3.  In this table, the MFCC, MT, and SAI methods and also the 

Method Global 
Var 

# HMM 
States # Feat # Param Database Sub-set 

(100 sentences) 
Entire Database 

(6300 sentences)

MFCC N 3 13 106 40.23% 41.56% 
MFCC_D_A N 3 39 262 50.94% 54.46% 

Mellin N 3 8100 48628 18.85% 14.11% 
Mellin Y 3 8100 48628 20.22% 18.41% 
Mellin N 1 8100 16212 26.23% 23.68% 
Mellin Y 1 8100 16212 30.62% 27.19% 
Mellin N 3 500 3028 16.67% 10.66% 
SAI N 3 4480 26908 N/A 15.55% 

 
Table 3.  Comparison of the results of the HTK experiments shown in percent correct 
recognition.  Note that the number of HMM states is the number of emitting states. 
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varying parameters used in the experiments are compared for percent correct recognition.  

Since no delta and acceleration coefficients are calculated for the MT data, it is 

appropriate to compare them to ordinary MFCC results instead of MFCC with delta and 

acceleration coefficients.  This method is included in the table for reference and to 

observe how the calculation of delta and acceleration coefficients improves percent 

recognition results.  The method column of the table indicates the method of feature 

extraction: MFCC, MFCC including delta and acceleration coefficients, the MT images 

at two different resolutions, and finally the SAI image representation.  The global 

variance column indicates whether the initial global variance computed is the same one 

used throughout all the HMM re-estimations or if the variance for each HMM model is 

re-estimated during each iteration.  The number of HMM states column indicates the 

number of states used to build the HMM models.  As discussed in the previous section, 

the number of features for the MT data is restricted by HTK to a maximum of 8192; 

therefore, the maximum number of features used in the MT experiments is 8100.  The 

number of features column indicates how many features each method uses.  The number 

of parameters column indicates the number of parameters that the HMM models must be 

trained to estimate.  The formula for calculating the number of parameters is  

 ( ) ( ) ( ) ( )2# 2 # # # # 2parameters states features states states= ⋅ ⋅ + + +  (20) 

Diagonal covariance matrices were used, so each state must have means and variances 

equal to the number of features, which is the reason for the factor of two.  Adding the 

number of states is necessary because a global constant is estimated for each state.  The 

final term is a result of the estimation of the state transition matrix.  The state transition 

matrix includes the initial and final state, hence the +2 in this term.  The database subset 

(100 sentences) column shows results in percent correct recognition when a subset of the 
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TIMIT database is used for training and testing.  The final column shows the results in 

percent correct recognition when the entire TIMIT database is used for training and 

testing. 

 The most interesting aspect of the results in Table 3 is the percent correct 

recognition in each category.  The best performing method for MT data recognition is the 

1-state HMM with global variances used throughout HMM re-estimations, with a correct 

recognition rate of 27.2%.  It is obvious that the recognition rates are better when the 

global variances are used in re-estimations than when the variances are re-estimated in 

each iteration.  The reason for this is that the database is not large enough to support 

accurate training of the individual mixture variances.  Also, note that the 1-state models 

have roughly one-third the number of parameters to estimate compared to the 3-state 

models.  This reduction in the number of parameters for the HMM models to train makes 

training with the given data faster and produces better performance, but it also yields less 

flexibility to the models. 

Another interesting result is the decrease in performance when the MT data with 

500 features is used.  The reduction in features results in a reduction in the MT image 

resolution, which causes a decrease in percent recognition performance.  Even though the 

number of parameters to train is reduced for the MT image with 500 features, the 

negative effects from a reduced resolution of the MT image outweigh the positive effects 

of having fewer parameters to train.  Since HTK does not accept more than 8192 features, 

possible performance improvement using more than 8100 features was not explored, but 

this possibility would be an interesting topic for future research.  Also, a lot more data 

would be required to estimate significantly more parameters. 
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 The SAI data, used in computing the MT data, was also tested and found to 

perform better than the corresponding case with the MT.  This result suggests that some 

of the parameter settings for the MT and the SAI synchronization component used in this 

research should be further investigated. 

 One final observation to take note of from this table is the fact that performance 

decreases going from the tests on the database subset to tests on the entire database.  This 

result might be due to the properties of the reduced set of speakers, but more research is 

needed to determine its cause. 

 A comparison of the MFCC results with the MT and SAI results does show that 

the MFCCs have better performance, but they have received considerable research and 

the research on the MT and SAI is just beginning. 

4.2 Individual Phoneme Results 

 To compare performance for individual phonemes, tables 4-6 show the confusion 

matrices for results from MFCCs (3-state HMMs), MT with 1-state HMMs, and MT with 

3-state HMMs, respectively.  Both of the MT methods used the global variance during 

HMM re-estimation.  The confusion matrices list all the phonemes in the first column and 

show a mapping along each row of how each phoneme is recognized in the experiments.  

The matrices also list the number of insertions and deletions for each phoneme.  After the 

deletions column, the percent correct recognition for each phoneme is listed.  The next 

column lists the broad phonetic class of the phonemes, and the final column gives an 

average percent correct recognition for each broad phonetic class.  Comparison between 

all three confusion matrices shows an improvement in some, but not all, of the phonemes 

with the MT method over the MFCC method.   
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 Table 7 lists the phonemes with improved percent correct recognition 

performance using the MT features with either 1-state HMMs or 3-state HMMs over the 

MFCC features (without delta and acceleration coefficients).  Each of the MT methods 

used the global variance for all re-estimations.  Both the percent correct recognition rates 

and the percent accuracy rates are shown for each type of feature set.  In some cases the 

accuracy percentage was negative.  Obviously, the MT data does not perform equally 

well in all 1-state and 3-state cases.  Even though the MT features did not outperform the 

MFCCs overall, improvement was found for some phonemes. The increase in 

performance found for these phonemes with the MT might be exploited by fusing the 

particular phoneme models that have improved performance for the MT with existing 

models of HMMs trained with MFCCs.  Also, it is important to note that the MFCCs  

 

 
 MFCC Mellin-1 State Mellin-3 State 

Phoneme % Cor % Acc % Cor % Acc % Cor % Acc 

IY 45.41% 38.33% 56.07% -284.49% 40.07% 37.35% 
AE 43.55% 34.94% 13.32% -601.05% 51.82% 46.28% 
OW 41.91% 14.02% 55.08% -48.57% 21.28% 17.26% 
AA 5.01% -14.06% 38.36% -3846.17% 32.00% 26.80% 
UH 26.54% -153.09% 52.94% -149.02% 53.19% -53.19% 
UW 29.85% 15.39% 54.48% -178.65% 31.97% 26.29% 
V 61.37% -18.13% 11.62% -411.48% 63.24% 13.24% 

DH 30.88% 6.69% 39.95% -114.64% 5.79% 4.49% 
HH 44.22% -23.61% 56.99% -4376.16% 46.55% 26.06% 
CH 59.61% 5.88% 79.09% -2321.29% 66.11% -28.33% 
N 36.09% 25.90% 10.62% 9.64% 39.48% 35.39% 
M 56.88% 41.49% 75.91% 17.27% 28.49% 24.19% 

AW 49.30% -824.41% 68.10% -17515.95% 50.31% -16.77% 
OY 53.60% -11.15% 87.89% -1912.80% 86.99% 2.85% 
D 23.80% 11.61% 27.66% -6.12% 2.90% 2.90% 
P 84.80% 79.92% 83.08% -134.77% 90.39% 60.45% 
K 38.59% 20.28% 54.75% -87.40% 4.37% 3.80% 

 

Table 7.  The results of the HTK recognition process for phonemes with improved 
recognition performance using MT features over MFCC features. 
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have been finely tuned over decades of research, while the MT features are just starting to 

be investigated, and thus further research on the MT features may yield better results. 
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V. Discussion and Recommendations 

 Research previously conducted on vowel recognition using the MT [11] [17] 

suggested the possibility of improved speech recognition results with MT features.  This 

previous research used a Mixture of Gaussians model on single simulated vowel frames 

to perform vowel recognition [3] [11].  Since all broad phonetic classes of real speech 

were used in this research, not just synthetic vowels, it is more general than previous 

research.   

This research reported here differs from this previous research in that it uses 

HMMs to conduct the phoneme recognition experiments.  Since the HMMs are based on 

having synchronous feature vectors, adding the extra step of SAI synchronization was 

necessary.  This step, while converting the SAI to synchronous form, might have 

contributed to a decrease in recognition performance results due to some of the design 

choices made.   Investigating the tradeoff of some of these design choices related to 

synchronization may lead to better recognition performance.  Alternatively, a method of 

speech recognition that does not require synchronous data (thus enabling the SAI to 

remain asynchronous) may produce better results. 

There are a number of variations to try in future research.  One variation to try is 

feature normalization.  The MT features were not normalized to take into account overall 

magnitude differences between frames utterances.  Feature mean and variance 

normalization, for example, may improve results.  Another variation to try is using more 

than one mixture for each state in the HMM models.  This would make the models more 

complicated but might make them more discriminating, thereby leading to improved 

results.  Also, changing the algorithms used to calculate the various components of the 
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AIM to more complex ones may yield a tradeoff of computational complexity for 

improved results.  

 Rather than increasing the complexity of the recognition system, methods that 

reduce the complexity of the system but that retain as much information as possible in the 

data may be beneficial.  For instance, principal components analysis (PCA) is a linear 

transformation that reduces the dimensionality of a dataset while retaining as much of the 

information as possible contained in the dataset.  Another possible method for reducing 

complexity is to use marginal distributions (e.g., temporal and spectral profiles), of the 

image data, where feature vectors that sum down the rows and across the columns of the 

data matrix are employed.  Figure 18 shows an example of the marginal distributions of a 

SAI image frame.  Similar processing could be done with the MT images.  While PCA 

and marginal distributions might reduce feature information, they also might allow better 

trained HMMs given the small amount of data available in the TIMIT database. 

 As shown in the results section, some phonemes did increase in correct 

recognition performance when MT features were used instead of MFCC features.  It may 

be beneficial to attempt fusion of the phoneme models trained with MT data that show 

improvement with existing MFCC-based models that perform relatively well. 

 In summary, using the MT features lead to improved phoneme recognition rates 

for some phonemes.  The results obtained here further the AFRL/HECP mission in 

improving human-machine collaboration, and future research should be able to use these 

results to explore ways to further improve speech recognition. 
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Figure 18.  Marginal distributions of a SAI frame.  The waveform at the top of the figure 
is the original speech waveform.  The waveform at the bottom is the temporal profile of 
the SAI image, which is obtained by summing down the columns of the SAI data matrix.  
The waveform on the right is the spectral profile of the SAI image, which is obtained by 
summing across the rows of the SAI data matrix. 
 

 



 

 48

Appendix A: All Parameters Matlab Script 
 
% Parameters 
% for the project:  
%%%%%%%%%%%%% 
 
%%%%%%%%%%%%% 
% Signaloptions 
% all_options.signal.signal_filename=''; 
% all_options.signal.start_time=0; 
% all_options.signal.duration=; 
% all_options.signal.samplerate=16000; 
% all_options.signal.original_start_time=0; 
% all_options.signal.original_duration=; 
% all_options.signal.original_samplerate=16000; 
 
 
%%%%%%%%%%%%% 
% outer/middle ear filter function 
all_options.pcp.none.generatingfunction='gennopcp'; 
all_options.pcp.none.displayname='no correction by outer/middle ear'; 
all_options.pcp.none.revision='$Revision: 1.2 $'; 
 
 
%%%%%%%%%%%%% 
% bmm 
all_options.bmm.gtfb.generatingfunction='gen_gtfb'; 
all_options.bmm.gtfb.displayname='Gamma tone filter bank'; 
all_options.bmm.gtfb.revision='$Revision: 1.6 $'; 
all_options.bmm.gtfb.nr_channels=35; 
all_options.bmm.gtfb.lowest_frequency=100; 
all_options.bmm.gtfb.highest_frequency=6000; 
all_options.bmm.gtfb.do_phase_alignment='off'; 
all_options.bmm.gtfb.phase_alignment_nr_cycles=3; 
all_options.bmm.gtfb.b=1.019; 
 
 
%%%%%%%%%%%%% 
% nap 
all_options.nap.irinonap.generatingfunction='gen_irinonap'; 
all_options.nap.irinonap.displayname='Irinos nap'; 
all_options.nap.irinonap.revision='$Revision: 1.1 $'; 
 
 
%%%%%%%%%%%%% 
% strobes 
all_options.strobes.irinostrobes.generatingfunction='genirinostrobes'; 
all_options.strobes.irinostrobes.displayname='Irinos Strobes'; 
all_options.strobes.irinostrobes.revision='$Revision: 1.2 $'; 
 
%%%%%%%%%%%%% 
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% sai 
all_options.sai.irinosai.generatingfunction='genirinosai'; 
all_options.sai.irinosai.displayname='time integration stabilized 
auditory image'; 
all_options.sai.irinosai.revision='$Revision: 1.1 $'; 
all_options.sai.irinosai.start_time=0; 
all_options.sai.irinosai.maxdelay=0.035; 
all_options.sai.irinosai.buffer_memory_decay=0.0003; 
all_options.sai.irinosai.frames_per_second=200; 
all_options.sai.irinosai.delay_time_strobe_weight_decay=0.0002; 
 
 
%%%%%%%%%%%%% 
% user defined module 
all_options.usermodule.mellin.generatingfunction='gen_mellin'; 
all_options.usermodule.mellin.displayname='mellin Image'; 
all_options.usermodule.mellin.displayfunction='displaymellin'; 
all_options.usermodule.mellin.revision='$Revision: 1.12 $'; 
all_options.usermodule.mellin.do_all_frames=1; 
all_options.usermodule.mellin.framerange=[ 0 0]; 
all_options.usermodule.mellin.do_all_image=1; 
all_options.usermodule.mellin.audiorange=[ 1 200]; 
all_options.usermodule.mellin.flipimage=0; 
all_options.usermodule.mellin.ssi=0; 
all_options.usermodule.mellin.log=0; 
 
 
%%%%%%%%%%%%% 
% graphics 
all_options.graphics.ams.minimum_time=0.001; 
all_options.graphics.ams.maximum_time=0.035; 
all_options.graphics.ams.is_log=1; 
all_options.graphics.ams.time_reversed=1; 
all_options.graphics.ams.display_time=0; 
all_options.graphics.ams.time_profile_scale=1; 
all_options.graphics.autocorr.minimum_time=0; 
all_options.graphics.autocorr.maximum_time=0.035; 
all_options.graphics.autocorr.is_log=0; 
all_options.graphics.autocorr.time_reversed=0; 
all_options.graphics.autocorr.display_time=0; 
all_options.graphics.autocorr.time_profile_scale=1; 
all_options.graphics.grouped.minimum_time=0.001; 
all_options.graphics.grouped.maximum_time=0.035; 
all_options.graphics.grouped.is_log=1; 
all_options.graphics.grouped.time_reversed=1; 
all_options.graphics.grouped.display_time=0; 
all_options.graphics.grouped.time_profile_scale=1; 
all_options.graphics.grouped.plotstyle='waterfall'; 
all_options.graphics.grouped.colormap='summer'; 
all_options.graphics.grouped.colorbar='off'; 
all_options.graphics.grouped.viewpoint=[ 0 80]; 
all_options.graphics.grouped.camlight=[ 50 0; 30 90]; 
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all_options.graphics.grouped.lighting='phong'; 
all_options.graphics.grouped.shiftcolormap=0.8; 
all_options.graphics.gtfb.is_log=0; 
all_options.graphics.gtfb.time_reversed=0; 
all_options.graphics.gtfb.plotstyle='waterfall'; 
all_options.graphics.gtfb.colormap='cool'; 
all_options.graphics.gtfb.colorbar='vertical'; 
all_options.graphics.gtfb.camlight='left'; 
all_options.graphics.gtfb.lighting='phong'; 
all_options.graphics.hcl.is_log=0; 
all_options.graphics.hcl.time_reversed=0; 
all_options.graphics.hcl.plotstyle='waterfall'; 
all_options.graphics.hcl.colormap='hot'; 
all_options.graphics.hcl.colorbar='off'; 
all_options.graphics.irinosai.minimum_time=0.001; 
all_options.graphics.irinosai.maximum_time=0.035; 
all_options.graphics.irinosai.is_log=1; 
all_options.graphics.irinosai.time_reversed=1; 
all_options.graphics.irinosai.display_time=0; 
all_options.graphics.irinosai.time_profile_scale=1; 
all_options.graphics.irinosai.plotstyle='waterfall'; 
all_options.graphics.irinosai.colormap='summer'; 
all_options.graphics.irinosai.colorbar='off'; 
all_options.graphics.irinosai.viewpoint=[ 0 80]; 
all_options.graphics.irinosai.camlight=[ 50 0; 30 90]; 
all_options.graphics.irinosai.lighting='phong'; 
all_options.graphics.irinosai.shiftcolormap=0.8; 
all_options.graphics.mellin.is_log=0; 
all_options.graphics.mellin.time_profile_scale=100; 
all_options.graphics.scaleprofile.is_log=0; 
all_options.graphics.scaleprofile.time_profile_scale=1; 
all_options.graphics.scaleprofile.frequency_profile_scale=1; 
all_options.graphics.scaleprofile.minimum_time_interval=0.5; 
all_options.graphics.scaleprofile.maximum_time_interval=20.5; 
all_options.graphics.ti1992.minimum_time=0.001; 
all_options.graphics.ti1992.maximum_time=0.035; 
all_options.graphics.ti1992.is_log=1; 
all_options.graphics.ti1992.time_reversed=1; 
all_options.graphics.ti1992.display_time=0; 
all_options.graphics.ti1992.time_profile_scale=1; 
all_options.graphics.ti1992.plotstyle='waterfall'; 
all_options.graphics.ti1992.colormap='pink'; 
all_options.graphics.ti1992.colorbar='off'; 
all_options.graphics.ti2003.minimum_time=0.001; 
all_options.graphics.ti2003.maximum_time=0.035; 
all_options.graphics.ti2003.is_log=1; 
all_options.graphics.ti2003.time_reversed=1; 
all_options.graphics.ti2003.display_time=0; 
all_options.graphics.ti2003.time_profile_scale=1; 
all_options.graphics.ti2003.plotstyle='waterfall'; 
all_options.graphics.ti2003.colormap='summer'; 
all_options.graphics.ti2003.colorbar='off'; 
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all_options.graphics.ti2003.viewpoint=[ 0 80]; 
all_options.graphics.ti2003.camlight=[ 50 0; 30 90]; 
all_options.graphics.ti2003.lighting='phong'; 
all_options.graphics.ti2003.shiftcolormap=0.8; 
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Appendix B: Wave File Conversion Perl Script 
 
#!/usr/bin/perl 
 
# Read in a TIMIT .wav - strip off SPHERE header and convert to 
MS WAV format 
 
$list_in = "filelist.txt"; # reads in the file list of TIMIT 
files 
 
open(IN, "$list_in"); 
 chop(@in = <IN>); 
close(IN); 
$cnt = $#in; 
 
for($x=0; $x<=$cnt; $x++) { 
 ($root,$ext) = split('\.', $in[$x]); 
 print "$root\n"; 
 `/tools/NIST/bin/h_strip ${root}.wav ${root}.raw`; 
 `mv ${root}.wav ${root}.wav.orig`; 
 `sox -r 16000 -w -s ${root}.raw ${root}.wav`; 
} 
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Appendix C: Main Program Matlab Code 
 
% Main Program 
% 2LT Jesse Hornback 
% EENG 799 
% 27 July 05 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% initialization 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
echo off 
clear;clear global;clc 
global result 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% choose whether to compute: 
% 1) SAI only, 2) Mellin only, 3) SAI and Mellin, 4) HTK format 
z = 3; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% decide if you want plots: 0) off, 1) on 
plotting = 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if plotting, decide whether to plot a portion (frames == 0) or 
frames at 
% a time (frames == 1) 
frames = 0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
% to see code in command window 
echo on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% load parameters here 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
echo off 
 
[files,num_files] = file_list;num_files = 1; 
path1 = 'M:/timit/mellin/'; % path for the wave files 
%path1 = 'C:/MATLAB6p5/aim2003/Sounds/Tones and Misc'; 
path2 = 'H:/timit/mellin/'; % path for the SAI files 
path3 = 'H:/timit/mellin/'; % path for the Mellin files 
path4 = 'H:/timit/mellin/'; % path for the HTK files 
 
% load the parameter m file to get the all_options struct array 
current_directory = pwd; 
cd ../parameter_files 
run all_parameters 
cd(current_directory) 
 
%%%%%%%%%%%%%%%%%%%% 
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if z ~= 4 
 
 
for i = 1:num_files 
fprintf('\n << iteration %-0.0f >>\n\n',i) 
 
tic 
[signal_filename,dir] = get_parameter_file(i,files); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% option to adjust the Mellin transform "resolution"  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
all_options.usermodule.mellin.c_2pi=linspace(0,30,180); % 
original length = 601 (tried 180,50) 
all_options.usermodule.mellin.TFval=linspace(0,16,45); % original 
length = 321 (tried 45,10) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% load some variables that will be needed later  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
abridge_sai = 1; 
all_options.signal.signal_filename = signal_filename; 
all_options.signal.start_time=0; 
max_delay = all_options.sai.irinosai.maxdelay; 
c_2pi = all_options.usermodule.mellin.c_2pi; 
% load the wave file 
current_directory = pwd; 
cd(fullfile(path1,'MSwav_files')); 
[y,Fs,nbits,opts] = wavread(signal_filename); 
cd(current_directory); 
all_options.signal.duration = length(y)/Fs;clear y 
signal_duration = all_options.signal.duration; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%% start computations for differnt cases (1-3)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
if z == 1 
 
echo on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% compute SAI 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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echo off 
 
% call the aim_ng2_sai (modified) function 
[result,strobes,newSigLen] = 
aim_ng2_sai(all_options,signal_duration,max_delay,path1,abridge_s
ai); 
 
% save the SAI to a .mat file for use later 
save_sai(result.data.sai,i,signal_filename,dir,path2) 
 
 
time(i) = toc; 
 
if plotting == 0 
    clear result 
end 
 
end 
 
if z == 2 
 
echo on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% compute Mellin transform  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
echo off 
 
[result] = 
aim_ng2_mellin(all_options,signal_duration,signal_filename,max_de
lay,i,dir,path1,path2); 
 
% save the MT to a .mat file for use later 
save_mellin(result.data.usermodule,i,signal_filename,dir,path3) 
 
 
time(i) = toc; 
 
if plotting == 0 
    clear result 
end 
 
end 
 
if z == 3 
 
echo on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% compute SAI and Mellin transform 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
echo off 
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% call the aim_ng2 (modified) function 
[result,strobes,newSigLen] = 
aim_ng2(all_options,signal_duration,max_delay,path1,abridge_sai); 
 
 
%%%%%%%%%%%%%% 
% the SAI and Mellin data are not saved to a .mat file because 
they are 
% calculated on the fly 
%%%%%%%%%%%%%% 
 
 
time(i) = toc; 
 
if plotting == 0 
    clear result 
end 
 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% now collect the SAI and Mellin data from the result struct 
array and plot 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
warning off 
 
if plotting 
 
% specify what part of SAI image to plot and Mellin will be 
calculated in x2 
x1 = 1200; % x-axis from 1:x 
%y = 200;    % y-axis from y:end 
 
if z == 1 
 
% call the harvest_sai_data function 
sai_image = harvest_sai_data(result); 
 
clear result 
 
% plot part of the SAI 
plot_sai_image(sai_image,signal_duration,x1) % use this if doing 
only the SAI 
 
end 
 
if z == 2 
 
% call the harvest_mellin_data function 
mellin_image = harvest_mellin_data(result); 
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clear result 
 
 
% scale x1 value to Mellin image so that the portion of the 
Mellin image 
% displayed corresponds to the portion of the SAI image displayed 
x2 = x1*2/3; 
 
% plot part of the Mellin 
plot_mellin_mesh(mellin_image,signal_duration,c_2pi,x2) 
 
end 
 
if z == 3 
 
 
if frames == 0 
 
% call the harvest_sai_data function 
sai_image = harvest_sai_data(result); 
 
% call the harvest_mellin_data function 
mellin_image = harvest_mellin_data(result,frames); 
 
clear result 
 
% scale x1 value to Mellin image so that the portion of the 
Mellin image 
% displayed corresponds to the portion of the SAI image displayed 
x2 = x1*(size(mellin_image,2)/size(sai_image,2)); 
 
%%% plot part of the SAI and Mellin %%% 
plot_sai_mellin_image(sai_image,mellin_image,signal_duration,c_2p
i,x1,x2) 
plot_mellin_mesh(mellin_image,signal_duration,c_2pi,x2) 
 
end 
 
 
if frames == 1 
 
%%% plot frames at a time %%% 
%%plot_sai_mellin_image_frames_obsolete(sai_image,mellin_image,si
gnal_duration,c_2pi,newSigLen) 
plot_sai_mellin_image_frames(result.data.sai,result.data.usermodu
le,signal_duration,c_2pi) % plot one frame at a time 
%plot_sai_mellin_image_frames2(result.data.sai,result.data.usermo
dule,signal_duration,c_2pi) % plot two frames at a time 
%plot_sai_mellin_image_frames3(result.data.sai,result.data.usermo
dule,signal_duration,c_2pi) % plot three frames at a time 
 
clear result 
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end 
 
end 
 
end % this ends the if plotting 
warning on 
 
end % this ends the calculation of the for loop 
 
%%% display computation time 
 
fprintf('\nThe computation time in minutes for each file 
was\n\n') 
%[a,files] = parameter_file_list; % this function isn't used 
anymore 
for i = 1:num_files 
    [file,dir] = get_parameter_file(i,files); 
    fprintf('%s\t%-0.2f\n',char(dir),time(i)/60) 
end 
 
fprintf('\nThe total computation time was\n\n') 
fprintf('    %-0.2f minutes',sum(time)/60) 
 
fprintf('\n\nThe average computation time was\n\n') 
fprintf('    %-0.2f minutes\n\n',(sum(time)/60)/length(time)) 
 
 
end % this ends the if z ~= 4 
 
 
 
if z == 4 
 
echo on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% write Mellin data to HTK format 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
echo off 
 
for i = 1:num_files 
tic 
 
global result % so that result can be cleared within the harvest 
mellin function 
 
[signal_filename,dir] = get_parameter_file(i,files); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% load some variables that will be needed later  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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all_options.signal.signal_filename = signal_filename; 
all_options.signal.start_time=0; 
max_delay = all_options.sai.irinosai.maxdelay; 
c_2pi = all_options.usermodule.mellin.c_2pi; 
% load the wave file 
current_directory = pwd; 
cd(fullfile(path1,'MSwav_files')); 
[y,Fs,nbits,opts] = wavread(signal_filename); 
cd(current_directory); 
all_options.signal.duration = length(y)/Fs;clear y 
signal_duration = all_options.signal.duration; 
 
 
% load previously computed Mellin data into result 
result.data.usermodule = 
load_mellin(i,signal_filename,dir,path3); 
 
%%% put PCA here? %%% 
%min_frac = 0.05 % minimum fraction variance component to keep 
%mellin_image = pca_mellin(min_frac,i,signal_filename,dir,path3) 
%%%%%%%%%%%%%%%%%%%%% 
 
% call the harvest_mellin_data function 
mellin_image = harvest_mellin_data_htk(result); 
%clear result 
 
frame_period = 
round(1000*signal_duration/size(mellin_image,2))/1000; 
 
 
current_directory = pwd; 
cd(fullfile(path4,'HTK_files')); 
warning off; 
mkdir(dir);warning on 
[pathstr,name,ext] = fileparts(signal_filename); 
filename = fullfile(pathstr,name); 
fprintf('%-0.0f writehtk %s\n',i,filename) 
writehtk(sprintf('%s.htk',filename),mellin_image',frame_period,9) 
cd(current_directory) 
 
clear mellin_image 
 
time(i) = toc; 
 
if rem(i,10) == 0 
    pack; 
end 
 
end 
 
%%% display computation time 
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fprintf('\nThe total computation time was\n\n') 
fprintf('    %-0.2f minutes',sum(time)/60) 
 
fprintf('\n\nThe average computation time was\n\n') 
fprintf('    %-0.2f seconds\n\n',(sum(time))/num_files) 
 
end % this ends if z == 4 
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Appendix D: Synchronize SAI Matlab Script 
 
function [data_final,newSigLen] = 
synch_sai(data,strobes,signal_duration,max_delay,sampling_rate) 
% 
% Written by Lt Jesse Hornback 
% 
 
[a NumFrames] = size(data); 
 
% find the strobe points 
[Strobes,Strobes_diff] = strobes_est(strobes); 
avg_str_diff = mean(Strobes_diff); % find the average time 
difference between each strobe 
Strobes_diff = [Strobes_diff avg_str_diff]; % account for this 
variable being one shorter than Strobes 
 
desired_portion = sampling_rate; % part of the .035 sec window 
that we want to take out and keep 
if avg_str_diff/desired_portion > 1.375 | 
avg_str_diff/desired_portion < 0.75 
    fudge_factor = desired_portion/avg_str_diff; 
else 
    fudge_factor = 1; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% do the uniform sampling here 
which_strobes = 
sample_strobes(Strobes_diff,signal_duration,sampling_rate); % 
find which frames to use at the SR 
NumFrames_new = length(which_strobes); 
for i = 1:NumFrames_new 
    data_sampled{i} = data{which_strobes(i)}; 
    Strobes_diff_new(i) = Strobes_diff(which_strobes(i)); 
end 
clear data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Get the data and take out the superfluous data 
%newSigLen = []; 
LenDif = 0; 
h = waitbar(0,'Synchronizing SAI Image Data...'); 
for i = 1:NumFrames_new 
    c = struct(data_sampled{i}); 
    [NumCh SigLen] = size(c.values); 
    % find what size the new matrix should be with the 
superfluous data removed 
    %newSigLen(i) = 
round(SigLen*(desired_portion/max_delay)*(Strobes_diff(i)/avg_str
_diff)); 
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    newSigLen(i) = 
round(SigLen*(Strobes_diff_new(i)/max_delay)*fudge_factor); % use 
this if desired portion = avg_str_diff 
    if size(c.values,2) < newSigLen(i); 
        newSigLen(i) = size(c.values,2); 
    end 
    %cc{i}.values = c.values(:,1:newSigLen(i)); % this is the 
original 
    cc{i}.values = 
c.values(:,1:round((sampling_rate/max_delay)*SigLen)); % this is 
to try and get an avg of the length of the sampling rate from 
each frame 
    waitbar(i/NumFrames,h) 
end 
close(h) 
clear data_sampled 
 
% output to frames 
for i = 1:NumFrames_new 
    data_final{1,i}=frame(cc{i}.values); 
end 
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